Meloxicam Decreases the Formation of Peritoneal Adhesions in an Experimental Surgical Model in Rats

Authors

  • Luis Alfredo Hernandez Villarroel University of Oriente
  • Henry Fernandez University of Oriente
  • Luisa Cesin University of Oriente

DOI:

https://doi.org/10.5195/ijms.2017.175

Keywords:

Cyclooxygenase 2 Inhibitors, Experimental Animal Models, General Surgery, Non-Steroidal Anti-Inflammatory Agents, Tissue Adhesions

Abstract

Background: Inflammatory adhesions result from an inflammatory response of the peritoneum during an intra-abdominal inflammatory process secondary to thermal or mechanical injury, infection, radiation, ischemia, dissection, abrasion or foreign body reaction. Adhesions produce consequences such as: infertility, intestinal obstruction, and pelvic-abdominal pain. The objective of this study is to evaluate the effects of Meloxicam, a selective cyclooxygenase-2 inhibitor, on the formation of postoperative peritoneal adhesions in an experimental animal model.

Methods: Twenty female Wistar rats were submitted to laparotomy. Postoperative peritoneal adhesions were induced by scorching the serous surface of the colon. The animals were randomly divided into two experimental groups: one group received Meloxicam intramuscularly for 7 days, and the other served as a control group. They were sacrificed and evaluated at 15 days.

Results: In the animals given Meloxicam, it was observed that a decrease in number (p = 0.018), severity (p = 0.004), extension (p = 0.011), density (p = 0.023), degree of inflammation (p = 0.002), vascular proliferation (p = 0.004) and fibrosis (p = 0.029) of adhesions, compared to the control group.

Conclusion: In conclusion, this study demonstrated that the administration of Meloxicam intramuscularly significantly decreases the formation of postoperative peritoneal adhesions and, therefore, may be useful in their prevention. The effects of Meloxicam could not only be due to its anti-inflammatory action, but also to its effects on the expression of the Vascular Endothelial Growth Factor.

Metrics

Metrics Loading ...

Author Biography

Luis Alfredo Hernandez Villarroel, University of Oriente

Luis Hernández is a doctor of medicine, recently gradua¬ted from the University of Oriente. He is winner of the second place in the international competition of research works in the XXVIII International Scien¬tific Congress of the Latin American Federation of Scientific Societies of Me¬dical Students and winner of the first place in clinical cases and the third place in research works in the III Congress of Students of Medicine of the University of the Andes and Regional Course Zone C of the Latin American Federation of Scientific Societies of Medi¬cal Students

References

1. Bozdag Z, Gumus M, Arikanoglu Z, Ibiloglu I, Kaya S, Evliyaoglu O. Effect of intraperitoneal Thymoquinone on Postoperative Peritoneal Adhesions. Acta Chir Belg. 2015(5); 115: 364-368.
2. De Clerq K, Sheltfhout C, Bracke M, De Wever O, Van Bockstal M, Ceelen W, et al. Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in vivo characterization. Bio¬materials. 2016; 96: 33-46.
3. Szomstein S, Lo Menzo E, Simpfendorfer C, Zundel N, Rosenthal RJ. Lapa¬roscopic Lysis of Adhesions. World J Surg. 2006; 30(4): 535-40.
4. Schnuriger B, Barmparas G, Branco BC, Lustenberger T, Inaba K, Demetria¬des D. Prevention of postoperative peritoneal adhesions: a review of the literature. Am J Surg. 2011; 201(1): 111-121.
5. Dubcenco E, Assumpcao L, Dray X, Gabrielson KL, Ruben DS, Pipitone LJ, et al. Adhesion formation after peritoneoscopy with liver biopsy in a survi¬val porcine model: comparison of laparotomy, laparoscopy, and transgastric natural orifice transluminal endoscopic surgery (NOTES). Endoscopy. 2009; 41(11): 971-978.
6. Practice Committee of American Society for Reproductive Medicine in co¬llaboration with Society of Reproductive Surgeons. Pathogenesis, consequen¬ces, and control of peritoneal adhesions in gynecologic surgery: a committee opinion. Fertil Steril. 2013; 99(6): 1550-1555.
7. Rajab TK, Wallwiener M, Talukdar S, Kraemer B. Adhesion-Related Com¬plications Are Common, But Rarely Discussed in Preoperative Consent: A Multicenter Study. World J Surg. 2009; 33(4): 748-750.
8. ten Broek RP, Issa Y, van Santbrink EJ, Bouvy ND, Kruitwagen RF, Jeeker J, et al. Burden of adhesions in abdominal and pelvic surgery: systematic review and met-analysis. BMJ. 2013; 347: f5588.
9. Ward BC, Panitch A. Abdominal Adhesion: Current and Novel Therapies. J Surg Res. 2011; 165(1): 91-111.
10. Ahmad G, Duffy JM, Farquhar C, Vail A, Vandekerchove P, Watson A, et al. Barrier agents for adhesion prevention after gyneacological surgery (Review). Cochrane Database of Syst Rev. 2008;(2):CD000475.
11. Wallwiener M, Brucker S, Hierlemann H, Brochhausen C, Solomayer E, Wallwiener C. Innovative barriers for peritoneal adhesion prevention: liquid or solid? A rat uterine horn model. Fertil Steril. 2006; 86 (4 Suppl): 1266-1276.
12. Ayala M, Ramírez E, Quiroz J, Ortiz J, González B. [Role of alopurinol in peritoneal adherences when placing a polypropylene mesh: Experimental study]. Cir Gen. 2013; 35(1): 16-19.
13. Fotiadis K, Filidou E, Arvanitidis K, Valatas V, Stavrou G, Basdanis G, et al. Intraperitoneal application of phospholipids for the prevention of postope¬rative adhesions: a possible role of myofibroblasts. J Surg Res. 2015;197(2): 291-300.
14. Vázques CJ, Ortiz MM, Sánchez GJR, Reynoso VJ, Gutiérrez I, Gutiérrez C. [Decrease of angiogenesis with spironolactone and captopril and the effect on intraperitoneal adherences]. Cir Gen. 2007; 29(4): 265-268. Spanish.
15. Maciver AH, McCall M, James Shapiro AM. Intra-abdominal adhesions: cellular mechanisms and strategies for prevention. Int J Surg. 2011; 9(8): 589-594.
16. Hoffmann NE, Siddiqui SA, Agarwal S, McKellar SH, Kurtz HJ, Gettman MT, et al. Choice of Hemostatic Agent Influences Adhesion Formation in a Rat Cecal Adhesion Model. J Surg Res. 2009; 155(1): 77-81.
17. Yetkin G, Uludag M, Citgez B, Karakoc S, Polat N, Kabukcuoglu F. Preven¬tion of peritoneal adhesions by intraperitoneal administration of vitamin E and human amniotic membrane. Int J Surg. 2009; 7(6): 561-565.
18. Koninckx P, Corona R, Timmerman D, Verguts J, Adamyan L. Peritoneal full-conditioning reduces postoperative adhesions and pain: a randomised controlled trial in deep endometriosis surgery. J Ovarian Res. 2013; 6(1):90.
19. Huang LN, Yao XM. Inhibitory effect of Meloxicam on the cultured fibro¬blasts from the excised pterygium. Int J Ophthalmol. 2008; 1(1): 48-51.
20. AVECAL (Venezuelan Association for the Science of Laboratory Animals). [Manual for the production and ethical use of laboratory animals]. Ministry of Popular Power for Science and Technology. Caracas. 2008. Spanish.
21. Mayagoitia-Gonzalez JC, Gudiño-Amezcua LM, Rivera-Barragan V, Mella¬do-Diaz AV, Díaz-Chavez EP. [Prevention of intestinal adhesions, through the addition of hyaluronic acid/carboxymethylcellulose gel. Experimental model in rats]. Cir Cir. 2012; 80(2): 150-156.
22. Marentes Etienne JJ, Joya Cervera RE, Rodríguez Hernandez A, Díaz-Cha¬vez EP. [Efficacy of a silicone composite mesh to reduce intra-abdominal adhesions in wistar rats: A preliminary report]. Cir Gen. 2014; 36(4): 205-208. Spanish.
23. Brochhausen C, Schmitt VH, Planck CN, Rajab TK, Hollemann D, Tapprich C, et al. Current strategies and future perspectives for intraperitoneal adhesion prevention. J Gastrointest Surg. 2012; 16(6): 1256-1274.
24. Fredriksson F, Christofferson RH, Carlsson PO, Lilja HE. Locally increased concentrations of inflammatory cytokines in an experimental intrabdominal adhesion model. J Pediatr Surg. 2014; 49(10): 1480-1484.
25. Braun KM, Diamond MP. The Biology of Adhesion Formation in the Perito¬neal Cavity. Semin Pediatr Surg. 2014; 23(6): 336-343.
26. Saed GM, Munkarah AR, Diamond MP. Cycloxygenase-2 is expressed in human fibroblasts isolated from intraperitoneal adhesions but not from nor¬mal peritoneal tissues. Fertil Steril. 2003; 79(6): 1404-1408.
27. Saed GM, Munkarah AR, Abu-Soud HM, Diamond MP. Hypoxia upregulates cycloxygenase-2 and prostaglandin E2 levels in human peritoneal fibroblasts. Fertil Steril. 2005; 83 Suppl 1: 1216-1219.
28. Cahill RA, Wang JH, Soohkai S, Redmond HP. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions. Surgery. 2006; 140(1): 108-112.
29. Cahill RA, Redmond HP. Cytokine orchestration in post-operative peri¬toneal adhesion formation. World J Gastroenterol. 2008; 14(31): 4861-4866.
30. Du XH, Liu JQ, Xin K, Liu GH. Dexamethasone and sodium carboxymethyl cellulose prevent postoperative intraperitoneal adhesions in rats. Braz J Med Biol Res. 2015; 48(4): 344-348.
31. Allahverdi TD, Allaverdi E, Yayla S, Deprem T, Merhan O, Vural S. The Comparison of the Effects of Ellagic Acid and Diclofenac Sodium on Intra-Ab¬dominal Adhesion: An In Vivo Study in the Rat Model. Int Surg. 2014; 99(5): 543-550.
32. Arung W, Jehaes F, Cheramy JP, Defraigne JO, Meurisse M, Honore P, et al. Effects of Parecoxib on The Prevention of Postoperative Peritoneal Adhesions in Rats. J Invest Surg. 2013; 26(6): 340-346.
33. Greene AK, Alwayn IP, Nose V, Flynn E, Sampson D, Zurakowski D, et al. Prevention of Intra-abdominal Adhesions Using the Antiangiogenic COX-2 inhibitor Celecoxib. Ann Surg. 2005; 242(1): 140-146.
34. Guvenal T, Cetin A, Ozdemir H, Yanar O, Kaya T. Prevention of postopera¬tive adhesión formation in rat uterine horn model by nimesulide: a selective COX-2 inhibitor. Hum Reprod. 2001;16(8): 1732-1735.
35. Guvenal T, Yanar O, Timuroglu Y, Cetin M, Cetin A. Effects of selective and non-selective cyclooxygenase (COX) inhibitors on postoperative adhe¬sión formation in a rat uterine horn model. Clin Exp Obstet Gynecol. 2010; 37(1): 49-52.
36. Keskin HL, Akkus SM, Sirens YS, Ustuner I, Keles H, Ide T, et al. Com¬parison of the Effects of Meloxicam and Dexketoprofen on Postoperative Adhesion Formation in a Rat Uterine Horn Surgical Model. J Minim Invasive Gynecol. 2013; 20(2): 185-191.
37. Oliveira TM, Sakai VT, Machado MA, Dionísio TJ, Cestari TM, Taga R, et al. COX-2 Inhibition Decreases VEGF Expression and Alveolar Bone loss During the Progression of Experimental Periodontitis in Rats. J Periodontol. 2008; 79(6): 1062-1069.
38. Xin B, Yokoyama Y, Shigeto T, Futagami M, Mizunuma H. Inhibitory Effects of Meloxicam, a Selective Cyclooxygenase-2 inhibitor, and Ciglitazone, a Pe-roxisome Proliferator-Activated Receptor Gamma Ligand, on the Growth of
Human Ovarian Cancers. Cancer. 2007; 110(4): 791-800.
39. Quintana R, Kopcow L, Marconi G, Young E, Yovanovich C, Paz DA. Inhibi¬tion of cyclooxygenase-2 (COX-2) by meloxicam decreases the incidence of ovarian hyperstimulation syndrome in a rat model. Fertil Steril. 2008; 90 (4 Suppl): 1511-1516.

Published

2017-03-19

How to Cite

Hernandez Villarroel, L. A., Fernandez, H., & Cesin, L. (2017). Meloxicam Decreases the Formation of Peritoneal Adhesions in an Experimental Surgical Model in Rats. International Journal of Medical Students, 5(1), 6–13. https://doi.org/10.5195/ijms.2017.175