Title: Factors Associated with Poor Sleep among Young People in Mauritius: A Survey-Based Study

Article type: Original Article

Author names:

1. Yudisha Devi Ramdhany
2. Smita Sulackshana Devi Goorah
3. Jayrani Cheeneebash
4. Ritwij Niketan Oodun

Degrees and Affiliations:

1. BSc (Hons) Medical Science. Fifth-year Medical Student. University of Mauritius, Reduit, Mauritius.
2. MBBCh, MSc, MRCP. Faculty of Medicine and Health Science, University of Mauritius, Reduit, Mauritius.
3. BSc (Joint Hons) Mathematics and Environmental Studies, MSc Mathematics, PhD in Applied Mathematics. Faculty of Science, University of Mauritius, Reduit, Mauritius.
4. MD Psychiatry. Consultant in Psychiatry, Ministry of Health and Wellness, Mauritius.

ORCID (Open Researcher and Contributor Identifier):

1. https://orcid.org/0000-0001-5831-2996
2. https://orcid.org/0000-0002-3961-3205
3. https://orcid.org/0000-0001-9627-1128
4. https://orcid.org/0000-0003-0768-1905

About the author: Yudisha Devi Ramdhany is currently a fifth-year medical student of University of Mauritius, Reduit, Mauritius. She is in a six-year joint medical program with the University of Bordeaux, France.

Corresponding author email: yudisharam20@gmail.com.
Acknowledgment: The authors acknowledges the contribution of all participants.
Financing: This research received no external funding.
Conflict of interest statement by authors: The authors declare no conflicts of interest.
Compliance with ethical standards: This study was approved by the Ethics Sub-Committee at the Ministry of Health and Wellness, Mauritius (Reference: MHC/CT/NETH/2019/V2).

Authors Contribution Statement:

Contributor Role	Role Definition	Authors			
Conceptualizatio n	Ideas; formulation or evolution of overarching research goals and aims.	X	X		X
Data Curation	Management activities to annotate (produce metadata), scrub data and maintain research data (including software code, where it is necessary for interpreting the data itself) for initial use and later reuse.	X		X	
Formal Analysis	Application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data.	X		X	
Funding Acquisition	Acquisition of the financial support for the project leading to this publication.				
Investigation	Conducting a research and investigation process, specifically performing the experiments, or data/evidence collection.	X		X	X
Methodology	Development or design of methodology; creation of models	X	X	X	
Project Administration	Management and coordination responsibility for the research activity planning and execution. X				
Resources	Provision of study materials, reagents, materials, patients, laboratory samples, animals, instrumentation, computing resources, or other analysis tools.				
Software	Programming, software development; designing computer programs; implementation of the computer code and supporting algorithms; testing of existing code components.				
Supervision	Oversight and leadership responsibility for the research activity planning and execution, including mentorship external to the core team.				
Validation	Verification, whether as a part of the activity or separate, of the overallreplication/reproducibility of results/experiments and other research outputs.				
Visualization	Preparation, creation and/or presentation of the published work, specifically visualization/data presentation.	X	X	X	
Writing - Original Draft Preparation	Creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation).		X		
Writing - Review \& Editing	Preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision - including pre- or postpublication stages.	X	X		

Manuscript word count: 2932
Abstract word count: 240

Number of Figures and Tables: 1 Figure and 4 Tables

Personal, Professional, and Institutional Social Network accounts.

- Facebook: Yudisha Ramdhany, University of Mauritius @UoMofficialpage
- Twitter:
- Instagram:
- Linkedin: Smita Goorah

Discussion Points: \#MedicalStudents, are you interested in \#sleep quality issues in young people? In this technological era, are young people experiencing sufficient good quality of sleep? Does deprivation of good quality sleep have long-term health impacts? Is it important to investigate sleeping habits of young people?

Publisher's Disclosure: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our readers and authors we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ABSTRACT.

Background: Poor sleep quality among young people is a global health concern. The purpose of this study was to explore the prevalence of poor sleep among young people in Mauritius, and to investigate associated contributory factors.

Methods: In this cross-sectional study, 202 questionnaires were completed during face-to-face interviews with participants aged between 14 and 29 years. The Pittsburgh Sleep Quality Index (PSQI) was used to measure sleep quality. The Epworth Sleepiness Scale (ESS) was utilized to evaluate daytime sleepiness, and the Adolescent Sleep Hygiene Scale (ASHS) was used to assess sleep hygiene.
Results: The mean global PSQI was 4.81 ($95 \% \mathrm{Cl}: 4.4,5.22$). The prevalence of poor sleep quality (global PSQI score >5) was 30.7%. Our results showed that 35.6% of the participants slept less than seven hours over a period of one month. Young people of the male gender reported better sleep quality than those of the female gender ($p=0.008$), and sleep quality was significantly associated with longer sleep duration ($p<0.0001$), prebedtime relaxing activities ($p=0.01$), and daytime physical exercise of more than 20 minutes ($p=0.001$). In contrast, alcohol consumption after 18:00 ($p<0.0001$), tobacco smoking after 18:00 ($p<0.0001$), pre-bedtime awakening activities ($p=0.001$), and poor sleep environment ($p<0.0001$) negatively influenced sleep quality.
Conclusion: This study showed that an important percentage of young people had poor sleep quality. This was observed to be associated to several modifiable factors. These initial results can help to guide further research on sleep quality in Mauritius.

Key Words: Sleep Quality, Global Health, Prevalence, Mauritius, Sleep Hygiene, Cross-Sectional Studies.

IMtranaonal Iounna of
MEDICAL STUDENTS

INTRODUCTION.

Sufficient sleep is an essential human need and is comparable to other basic needs such as food, clothing, and shelter. ${ }^{1}$ In a systematic literature review carried out by Ohayon et al., ${ }^{2}$ selected criteria were validated as indicators of good sleep quality for teenagers and young adults. These were sleep latency within 30 minutes, waking up at most once per night, not waking up within 20 minutes after sleep onset, and having a minimum sleep efficiency, which compares sleep time to time spent in bed, of 85%. In addition, regarding sleep architecture in young people, having a maximum of one daily nap of less than 20 minutes implied good sleep quality.

Research studies from across the world have provided insights on the measures of sleep in young people and have suggested an important variation in sleep difficulties globally. A study from Hong Kong reported that 58.9\% of participants, aged between 12 to17 years, had obtained less than 7 hours of sleep daily, with 72.3% having poor sleep quality, as assessed by the global PSQI score. ${ }^{3}$ A longitudinal study among Korean adolescents initially aged 15 , showed that 22.8% of youths had poor sleep quality, and 25.6% had short sleep duration. ${ }^{4} \mathrm{~A}$ large study from Slovakia in 13- and 15-year old indicated that 30% of girls and 17% of boys had difficulties in getting to sleep. ${ }^{5}$ A cross-sectional survey among university students from 26 low- and middle-income countries confirmed major differences in the prevalence of sleep problems from 3% in Thailand to 28.9% in Indonesia. ${ }^{6}$ In the study, it was revealed that 15.3% of Mauritian youths, of average age 20.9 years, had faced nocturnal sleep problems in 2013. It was postulated that increased social stress could be a contributing factor; however, reasons for this alarming figure could not be evaluated further due to the scarcity of sleep-related studies in Mauritius.

Numerous vital and obligatory processes occur during sleep to help people stay healthy: physically, mentally and emotionally. For children and adolescents, sleep is fundamental as important physical developments occur in these age groups. Getting an adequate amount of sleep has multiple benefits: sleep stimulates tissue repair and growth, enhances the immune system, and consolidates memory and learning. ${ }^{7}$ On the other hand, failing to reach the sleep recommendations may lead to behavioral problems; such as not being able to follow instructions, cognitive impairment, depression, anxiety, and lack of self-control which can increase the risk of severe illnesses and accidents. ${ }^{8}$ Furthermore, dementia and chronic pain can result from advanced sleep disturbances. ${ }^{9}$ It has been noted that an irregular sleep pattern in adolescents and young adults is related to negative changes in the development of the brain, decreases the duration of sleep, and prevents the medial prefrontal cortex from functioning properly. ${ }^{10}$ Smiley et al. ${ }^{11}$ reported that both short and long sleep duration increased the likelihood of developing metabolic syndrome. Both acute sleep deprivation of more than 2 hours per night and chronic sleep deprivation of 1 to 4 hours per night worsened driving attitudes among youngsters at the wheel. ${ }^{12}$ In another study, ${ }^{13}$ poor sleep quality was associated with aggression, anxiety, antisocial personalities, attention-deficit/hyperactivity problems, depression, and somatic complaints in adolescents even though they had good sleep hygiene.

Numerous factors can affect the sleep quality in young people. These include age, gender, substance use (caffeine, alcohol, nicotine, cannabis, cocaine, and opioids), stimulants (prescribed or recreational), mobile
phone addiction, physical exercise, and the bedroom environment. Moreover, traveling to other countries with a different time zone affects the sleep pattern as the circadian rhythm is disturbed. ${ }^{3}$ Some studies have shown that medical students have poor sleep hygiene as they choose to sleep less to cope with their heavy syllabus. Almojali et al., ${ }^{14}$ reported that the prevalence of poor sleep quality in his study among Saudi medical students was 76% and this was associated with a decline in academic performance. Furthermore, in the study by Heijdenet al, ${ }^{15}$ teenagers who had media devices in their bedroom were shown to have insufficient sleep and had daytime sleepiness when compared to those who had few such devices. Regarding lifestyle factors, a study ${ }^{16}$ showed that one exercise session performed five or more days a week could enhance the perception of sleep quality by 50% in youngsters.

Several studies have demonstrated that sleep problems are increasing in young people worldwide. However, there is little documentation regarding the factors that impact the quality of sleep in young people with no previously diagnosed sleep disorders in Mauritius. This study explores the factors associated with poor sleep in such young people.

METHODS

Study Design

This cross-sectional study was carried out to investigate the factors associated with poor sleep among young people aged between 14 and 29 years in Mauritius. Ethical clearance was granted by the Ethics Sub-Committee of the Ministry of Health and Wellness (Reference: MHC/CT/NETH/2019/V2). Participants were selected using a snowball sampling method across a young population of 290,111 out of the 1.27 million inhabitants of Mauritius. The time frame was from November 19, 2019, to January 31, 2020. University students were initially recruited, and they subsequently referred their contacts from all over the island. A sample size of 384 was calculated at a 95% confidence level with a 5% margin of error. The purpose of the study was explained to each participant in a non-technical language. Consent forms were signed either by the participants themselves (if they were above 18 years) or by responsible parties of minor participants. They were assured that anonymity and confidentiality would be maintained throughout the research process, and that they could withdraw from the study at any time. The questionnaires were completed with the help of the study investigator during face-to-face interviews. Out of an initial 384 potential participants, only 202 people completed the study questionnaires.

Questionnaire

The questionnaires used were the Pittsburgh Sleep Quality Index (PSQI), the Epworth Sleepiness Scale (ESS), and the Adolescent Sleep Hygiene Scale (ASHS).

The PSQI is a self-report questionnaire used to assess sleep quality over one month and yields seven component scores (Subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction). The questions are scored on a 0 to 3 -scale
basis. The total of these scores gives the Global PSQI score, which ranges from zero to 21. A global PSQl score greater than 5 indicates poor sleep quality.

The ESS is a self-administered questionnaire used to assess daytime sleepiness. In this study, daytime sleepiness was assessed over a period of one month. The questionnaire comprises eight questions that include different circumstances in everyday life where a person may feel sleepy during the day. Each question has four responses: $0,1,2$, or 3 . The sum of all the responses gives the ESS score, ranging from $0-24$. Higher scores indicate a greater tendency to fall asleep. Scores from 0 to 5 indicate lower normal daytime sleepiness, scores from 6 to 10 indicate higher normal daytime sleepiness, scores from 11 to 12 indicate mild excessive daytime sleepiness, scores from 13 to 15 indicate moderate excessive daytime sleepiness, and scores from 16 to 24 indicate severe excessive daytime sleepiness. ${ }^{17}$

The ASHS is a self-report questionnaire used to assess sleep hygiene behaviors. This section contains 33 questions based on sleep hygiene, which can affect sleep quality and quantity during the past month. The scale is divided into eight subscales: (1) physiological factor, (2) behavioral arousal factor, (3) cognitive/ emotional factor, (4) sleep environment factor, (5) sleep stability factor, (6) daytime sleep factor, (7) substances factor and (8) bedtime routine factor. ${ }^{18}$ Each question has six responses: never, once in a while, sometimes, quite often, frequently, and always. One factor is reverse coded. In order to obtain the subscale and final scores, averages are taken so that the ASHS scores range from 1 to 6 . The higher the scores, the better is the sleep hygiene.

Statistical Analysis

The data from all of the 202 questionnaires were inputted and analyzed in IBM SPSS Statistics 25. Results were shown in the form of tables and charts. Inferential statistics such as the chi-squared test were used to test for any relationships between the collected variables. If the p-value obtained was less than 0.05 , the relationship was considered statistically significant.

RESULTS.

A total of 202 participants completed the questionnaire; 39.6% were males, and 60.4% were females. The mean age was 20.8 years (standard deviation $(S D)=4.3$). The most typical age range was between 18 and 21 years (34.7\%). Most of the participants (64.9\%) were students. Table 1 shows a summary of the profile of the participants. None of the participants had any previously diagnosed sleep disorders.

Table 2 summarizes the sleep schedules and sleep latency of participants. Figure 1 shows the time at which participants went to bed. The mean bedtime was 23:08, and the most common bedtime interval was 22:00 to 23:00 (25.2\%). The most popular wake-up time interval was 05:00 to 06:00 (34.2\%), and the mean wake-up time was 06:55. Overall, 73.8% of the participants took at most 15 minutes to fall asleep, while 2.5% required more than 60 minutes. The mean time taken to fall asleep was 20.7 minutes ($\mathrm{SD}=16.2$). Regarding the duration of sleep, 64.4% of the participants slept for more than 7 hours, and 2.5% had less than 5 hours of sleep. The mean duration of sleep was 7.7 hours (SD $=4.1$). On average, 35.6% of the participants slept for less than 7 hours and were considered poor sleepers, as described in recent literature. ${ }^{3}$ Among the poor sleepers, 68.6% were females, and 31.3% were males.

Table 3 summarizes the distribution of the sleep hygiene practices of the participants during the past month of the study. Overall, 48.0% of the participants frequently or always performed some awakening activities such as playing video games or watching television in bed before sleeping and 62.9% of the participants never or rarely followed a bedtime routine. Furthermore, 16.8% of the participants took a nap in the evening after 6 o'clock.

Among the participants, 69.3% had good sleep quality, and 30.7% had a PSQI score of greater than 5 , indicating poor sleep quality. More females (37.7\%) reported poor sleep quality than males (20.0\%). The mean PSQI score was $4.8(S D=2.9)$. Additionally, 29.7% and 57.9% of the participants reported their subjective sleep quality as "very good" and "fairly good" respectively. Moreover, 10.9% and 1.5% described their sleep quality as "fairly bad" and "very bad" respectively.

Regarding sleep quality, there was a positive association with the male gender ($p=0.008$), a longer sleep duration ($p<0.001$), doing relaxing activities one hour before bedtime ($p=0.01$), and physical exercise during the day for more than 20 minutes ($p=0.001$). In contrast, the following factors negatively impacted on sleep quality: alcohol consumption after 18:00 ($p<0.001$), tobacco smoking after 18:00 ($p<0.001$), pre-bedtime awakening activities ($p=0.001$), and poor sleep environment ($p<0.001$). The findings are summarized in Table 4.

Most of the participants (39.1\%) had higher normal daytime sleepiness, and 28.2\% had lower normal daytime sleepiness as measured by the ESS. 11.4\% had mild excessive daytime sleepiness, and 17.8% had moderate excessive daytime sleepiness. 3.5% showed severe excessive daytime sleepiness.

DISCUSSION.

This is the first study on sleep quality among young people in Mauritius using validated questionnaires such as PSQI, ESS and ASHS. There is a lack of local data on sleep issues in this age group, which makes contextualization of results difficult. A previous international study, which had comprised Mauritian university students, ${ }^{6}$ had assessed nocturnal sleep problems based on a general question on sleep problems with five options. Their results had shown that 15.3% of local participants had reported sleep problems in 2013. In our study, we found that poor sleep quality, as quantified by the PSQI scale, was experienced by 30.7% of local youngsters in 2019/2020. Although different methodologies underpinned the studies, the results suggest an increase in poor sleep quality in Mauritian young people in the last decade.

Our findings are also consistent with selected international population estimates of sleep quality. In a study carried out in China ${ }^{19}$ among college students using the PSQI instrument in 2016, 31\% of participants had poor sleep quality. Higher prevalence of poor sleep have been reported in the literature. A recent study conducted in three European countries ${ }^{20}$ namely Spain, Iceland and Estonia showed that 44% of boys and 53% of girls aged 13 to 16 years had poor sleep quality as determined by the PSQI scale. Other studies using different methodologies and instruments have also reported a high proportion of young people experiencing poor sleep. A longitudinal study was carried out from 2015 to 2018 in New York city ${ }^{2}$ where sleep quality was explored by the use of wearable sleep tracking mobile technology, and it reported that good sleep quality was experienced by only 21.56% of teenagers and 19% of young adults highlighting the high prevalence of poor sleep in young people.

In our study, a significant relationship betweer gender and sleep quality was observed, with the male gender experiencing better sleep quality on the PSQI scale. Several studies ${ }^{22,23}$ have reported poorer sleep quality in young people of the female gender, although this is not a consistent finding in all studies. A study ${ }^{23}$ in college students aged 18-24 years, which used 7-day sleep logs to assess sleep variables, revealed that the female students had earlier bedtimes and rise times, longer sleep latency, woke up more frequently at night and had poorer sleep quality than male students throughout the week and at weekends. With respect to the study, ${ }^{23}$ it is noteworthy that most of the female students were single, had no bed partners and no children which could have contributed to the sleep disturbances. Although there are no clear explanations for the gender differences in sleep quality, it has been postulated that biological, societal and psychosocial features play an important role, and that gender differences in the self-reporting of symptoms also contribute to the findings. ${ }^{22,23}$

The relationship between alcohol consumption and sleep quality is not straightforward. Alcohol has sedative effects via its effects on the mediators of sleep homeostasis, and decreases sleep latency in non-alcoholic people, but it also disturbs sleep homeostasis and sleep architecture causing sleep disruptions in alcoholics. ${ }^{24}$ In a large community-based study in China, higher alcohol consumption and hard liquor were reported to be significantly associated with poor sleep quality. ${ }^{25}$ In our study, we did not quantify the alcohol intake nor the type of alcohol consumed, and therefore could not assess the influence of alcohol on sleep precisely. However, our results clearly showed that alcohol consumption after 18:00 negatively impacted on sleep quality. Similarly, we found that tobacco smoking after 18:00 had an adverse effect on sleep quality. Other studies have also
reported an association between nicotine dependence and poor sleep and specifically between PSQI scores and number of cigarettes smoked per day ${ }^{26}$. Nicotine is a well-known stimulant and raises alertness, and if it is consumed before sleeping, can affect sleep latency and may change the circadian rhythm, ${ }^{27}$ which leads to poor sleep.

We found that awakening activities performed 1 hour before bedtime using screen-based electronic devices such as television viewing, video games, computer, tablet and smartphone use was associated with poor sleep quality. This finding is consistent with an increasing body of evidence linking the usage of electronic and screen media devices in the bedroom with poor sleep in young people. ${ }^{28,29}$ Explanations for this finding include displacement of sleep by awakening activities, physiological and psychological stimulation of the user with interactive forms of the media especially social media use, and exposure to bright light influencing the circadian rhythm. ${ }^{28,29}$ Indeed, some studies have shown that sleep quality and other sleep variables can be negatively influenced by the only presence of a portable screen-based media device in the bedroom ${ }^{28,29}$ highlighting the insidious negative impact of such devices on sleep.

The sleep environment is important for sleep quality, and it has been reported that both physical and social features of the environment at both household and neighborhood levels can influence sleep health. ${ }^{30}$ In our study, we found a significant association between sleep environment and sleep quality. We focused on the physical aspects of the sleep environment at the household level namely the brightness of the room, the room temperature and the quality of the bed. We did not study the neighborhood context, family structures, socioeconomic environments or parental behaviors that could also influence sleep habits. ${ }^{30}$ On the other hand, we noted that good sleep quality was significantly associated with longer sleep duration, pre-bedtime relaxing activities, and daytime physical exercise of more than 20 minutes.

This study has several limitations. A snowball sampling method was used to recruit participants and hence caution has to be exercised when extrapolating the findings to the young population of the island. The study relied on the self-reporting of symptoms. These may be less reliable than sleep studies using sleep-tracking devices and actigraphy. The utilization of more objective measures of sleep could have added further insights into the sleeping patterns of the participants. Comparison of the results with other local studies was limited due to a lack of local published literature. In addition, the questionnaires used in this study assessed sleep over a limited period of time, so the results do not necessarily reflect enduring patterns. Nonetheless, our findings add to the current body of knowledge regarding sleep quality, expand on sleep data that could guide future research in the topic and promote awareness of the factors which contribute to poor sleep in Mauritius so that remedial actions can be taken to prevent detrimental health consequences of poor sleep in young people.

REFERENCES.

1. National Institute of Neurological Disorders and Stroke. Brain Basics: Understanding Sleep. Available from: https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/UnderstandingSleep; updated August 13 2019; cited April 28, 2022.
2. Ohayon M, Wickwire EM, Hirshkowitz M, Albert SM, Avidan A, Daly FJ, et al. National Sleep Foundation's sleep quality recommendations: first report. Sleep Health. 2017 Feb;3(1):6-19.
3. Lo HM, Leung JHY, Chau GKY, Lam MH, Lee KY, Ho A. Factors affecting sleep quality among adolescent athletes. Sports Nutr Ther. 2017 Jan;2(123).
4. Lee JE, Jang S-I, Ju YJ, Kim W, Lee HJ, Park E-C. Relationship between mobile phone addiction and the incidence of poor and short sleep among Korean adolescents: a longitudinal study of the Korean children \& youth panel survey. J Korean Med Sci. 2017 Jul;32(7):1166-1172.
5. Kosticova M, Husarova D, Dankulincova Z. Difficulties in getting to sleep and their association with emotional and behavioural problems in adolescents: does the sleeping duration influence this association? Int J Environ Res Public Health. 2020 Mar;17(5):1691.
6. Peltzer K, Pengpid S. Nocturnal sleep problems among university students from 26 countries. Sleep Breath. 2015 May;19(2):499-508.
7. Bruce ES, Lunt L, McDonagh JE. Sleep in adolescents and young adults. Clin Med (Lond). 2017 Oct;17(5):424-428.
8. Léger D, Bayon V, Ohayon MM, Philip P, Ement P, Metlaine A, et al. Insomnia and accidents: crosssectional study (EQUINOX) on sleep-related home, work and car accidents in 5293 subjects with insomnia from 10 countries. J Sleep Res. 2014 Apr;23(2):143-52.
9. Vinstrup J, Jakobsen MD, Andersen LL. Poor sleep is a risk factor for low-back pain among healthcare workers: prospective cohort study. Int. J. Environ. Res. Public Health. 2020 Feb;17(3):996.
10. Lunsford-Avery JR, Damme KSF, Engelhard MM, Kollins SH, Mittal VA. Sleep/wake regularity associated with default mode network structure among healthy adolescents and young adults. Sci Rep. 2020 Jan; 10 (509).
11. Smiley A, Wolter S, Nissan D. Mechanisms of association of sleep and metabolic syndrome. J Med Clin Res \& Rev. 2019;3(3):1-9.
12. Knott M, Classen S, Krasniuk S, Tippett M, Alvarez L. Insufficient sleep and fitness to drive in shift workers: a systematic literature review protocol. Inj Prev. 2019 Dec;25(6):589-594.
13. Milojevich HM, Lukowski AF. Sleep and mental health in undergraduate students with generally healthy sleep habits. PLoS One. 2016 Jun;11(6):e0156372.
14. Almojali A, Almalki SA, Alothman AS, Masuadi EM, Alaqeel MK. The prevalence and association of stress with sleep quality among medical students. J Epidemiol Glob Health. 2017 Sep;7(3):169-174.
15. van der Heijden KB, Stoffelsen RJ, Popma A, Swaab H. Sleep, chronotype, and sleep hygiene in children with attention-deficit/hyperactivity disorder, autism spectrum disorder, and controls. Eur Child Adolesc Psychiatry. 2018 Jan;27(1):99-111.
16. Oliveira LMFT, Silva AO, Santos MAM, Ritti-Dias RM, Diniz PRB. Exercise or physical activity: which is more strongly associated with the perception of sleep quality by adolescents? Rev Paul Pediatr. 2018 Jul-Sep;36(3):322-8.
17. The Epworth Sleepiness Scale. About the ESS-CHAD. Available from: https://epworthsleepinessscale.com/about-the-ess-chad/ [cited May 01, 2022].
18. Storfer-Isser A, Lebourgeois MK, Harsh J, Tompsett CJ, Redline S. Psychometric properties of the adolescent sleep hygiene scale. J Sleep Res. 2013 Dec;22(6):707-716.
19. Li Y, Bai W, Zhu B, Duan R, Yu X, Xu W, et al. Prevalence and correlates of poor sleep quality among college students: a cross-sectional survey. Health Qual Life Outcomes. 2020 Jul;18(1):210.
20. Galan-Lopez P, Domínguez R, Gísladóttir T, Sánchez-Oliver AJ, Pihu M, Ries F, et al. Sleep quality and duration in European adolescents (The AdolesHealth Study): A cross-Sectional, quantitative study. Children (Basel). 2021 Mar;8(3):188.
21. Robbins R, Affouf M, Seixas A, Beaugris L, Avirappattu G, Jean-Louis G. Four-year trends in sleep duration and quality: a longitudinal study using data from a commercially available sleep tracker. J Med Internet Res. 2020 Feb;22(2):e14735.
22. Fatima Y, Doi SAR, Najman JM, Mamun AA. Exploring gender difference in sleep quality of young adults: findings from a large population study. Clin Med Res. 2016 Dec;14(3-4):138-144.
23. Tsai LL, Li SP. Sleep patterns in college students: gender and grade differences. J Psychosom Res. 2004 Feb;56(2):231-7.
24. Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol. 2015 Jun;49(4):299310.
25. Zheng D, Yuan X, Ma C, Liu Y, VanEvery H, Sun Y, Wu S, Gao X. Alcohol consumption and sleep quality: a community-based study. Public Health Nutr. 2021 Oct;24(15):4851-4858.
26. Dugas EN, Sylvestre MP, O'Loughlin EK, Brunet J, Kakinami L, Constantin E, O'Loughlin J. Nicotine dependence and sleep quality in young adults. Addict Behav. 2017 Feb;65:154-160.
27. Gillman AG, Kosobud AE, Timberlake W. Pre- and post-nicotine circadian activity rhythms can be differentiated by a paired environmental cue. Physiol Behav. 2008 Jan 28;93(1-2):337-50.
28. Lund L, Sølvhøj IN, Danielsen D, Andersen S. Electronic media use and sleep in children and adolescents in western countries: a systematic review. BMC Public Health. 2021 Sep 30;21(1):1598.
29. Hale L, Kirschen GW, LeBourgeois MK, Gradisar M, Garrison MM, Montgomery-Downs H, Kirschen H, McHale SM, Chang AM, Buxton OM. Youth Screen Media Habits and Sleep: Sleep-Friendly Screen Behavior Recommendations for Clinicians, Educators, and Parents. Child Adolesc Psychiatr Clin N Am. 2018 Apr;27(2):229-245.
30. Johnson DA, Billings ME, Hale L. Environmental Determinants of Insufficient Sleep and Sleep Disorders: Implications for Population Health. Curr Epidemiol Rep. 2018 Jun;5(2):61-69.

SUMMARY - ACCELERATING TRANSLATION

Title: Factors Associated with Poor Sleep among Young People in Mauritius: A Survey-Based Study Main problem to solve: There is a lack of data regarding sleeping habits in young people in Mauritius. This is an important topic as deprivation of good quality sleep at a young age can contribute to many health conditions in later life.

Aims of the study: In this study, we are investigating the prevalence of poor sleep among young people in Mauritius, and its associated contributory factors.

Methodology: We conducted a survey among young people in Mauritius. We were able to recruit 202 participants. We used well-known questionnaires to determine the quality of sleep such as the Pittsburgh Sleep Quality Index (PSQI) to measure sleep quality, the Epworth Sleepiness Scale (ESS) to evaluate daytime sleepiness, and the Adolescent Sleep Hygiene Scale (ASHS) to assess sleep hygiene.
Results: The prevalence of poor sleep quality was 30.7%. Our results showed that 35.6% of the participants slept less than seven hours over a period of one month. Young people of the male gender reported better sleep quality than those of the female gender, and sleep quality was associated with longer sleep duration, prebedtime relaxing activities, and daytime physical exercise of more than 20 minutes. In contrast, alcohol consumption after 18:00, tobacco smoking after 18:00, pre-bedtime awakening activities, and poor sleep environment negatively influenced sleep quality.

Conclusion: This study showed that an important percentage of young people had poor sleep quality. This was observed to be associated to several modifiable factors. These initial results can help to guide further research on sleep quality in Mauritius.

FIGURES AND TABLES.

Figure 1. Time at Which Participants Went to Bed in the Study "Factors Associated with Poor Sleep among Young People in Mauritius."

1 Table 1. Gender, Age, and Employment Profile of the Participants in the Study "Factors Associated with Poor Sleep among Young People in Mauritius."

Variables	Number of participants	Percentage (\%)
Gender		30
Male	122	60.4
Female	49	24.3
Age	70	34.7
$14-17$	48	23.8
$18-21$	35	17.3
$22-25$	53	26.2
$26-29$	18	8.9
Employment Status	131	64.9
Employed	202	100
Unemployed		
Student		
Total		

2 Table 2. Gender, Age, and Employment Profile of the Participants in the study "Factors Associated with

Wake-up time (hour)	Percentage (\%)
$04: 00-05: 00$	18.3
$05: 00-06: 00$	34.2
$06: 00-07: 00$	18.3
$07: 00-08: 00$	15.8
$08: 00-09: 00$	7.4
$09: 00-10: 00$	0.6
$10: 00-11: 00$	73.7
Time taken to fall asleep (minutes)	23
Less or equal to 15	25
16 to 30	5
31 to 60	
More than 60	

1

Table 3. Sleep Hygiene Practices of Participants in the study "Factors Associated with Poor Sleep among Young People in Mauritius."

Frequently/Always	$16.8(34)$

	χ^{2} value	\mathbf{p}^{*} value
Sleep quality versus gender	7.120	0.008
Sleep quality versus sleep duration	58.180	<0.001
Sleep quality versus alcohol consumption	111.207	<0.001
Sleep quality versus smoking	166.386	<0.001
Sleep quality versus awakening activities	127.759	0.001
Sleep quality versus sleep environment	536.299	<0.001
Sleep quality versus physical exercise	124.380	0.001
Sleep quality versus relaxing activities	15.030	0.010

Table 4. Factors Associated with Sleep Quality among the Participants in the study "Factors Associated with Poor Sleep among Young People in Mauritius."

